Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 10(1): 18, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448452

RESUMO

Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.


Assuntos
Microbioma Gastrointestinal , Vaccinium macrocarpon , Animais , Humanos , Butiratos , Fenóis , Extratos Vegetais/farmacologia , Oligossacarídeos , Suplementos Nutricionais
2.
FASEB J ; 38(2): e23398, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38214938

RESUMO

In vitro systems are widely employed to assess the impact of dietary compounds on the gut microbiota and their conversion into beneficial bacterial metabolites. However, the complex fluid dynamics and multi-segmented nature of these systems can complicate the comprehensive analysis of dietary compound fate, potentially confounding physical dilution or washout with microbial catabolism. In this study, we developed fluid dynamics models based on sets of ordinary differential equations to simulate the behavior of an inert compound within two commonly used in vitro systems: the continuous two-stage PolyFermS system and the semi-continuous multi-segmented SHIME® system as well as into various declinations of those systems. The models were validated by investigating the fate of blue dextran, demonstrating excellent agreement between experimental and modeling data (with r2 values ranging from 0.996 to 0.86 for different approaches). As a proof of concept for the utility of fluid dynamics models in in vitro system, we applied generated models to interpret metabolomic data of procyanidin A2 (ProA2) generated from the addition of proanthocyanidin (PAC)-rich cranberry extract to both the PolyFermS and SHIME® systems. The results suggested ProA2 degradation by the gut microbiota when compared to the modeling of an inert compound. Models of fluid dynamics developed in this study provide a foundation for comprehensive analysis of gut metabolic data in commonly utilized in vitro PolyFermS and SHIME® bioreactor systems and can enable a more accurate understanding of the contribution of bacterial metabolism to the variability in the concentration of target metabolites.


Assuntos
Microbioma Gastrointestinal , Hidrodinâmica , Fermentação , Modelos Teóricos , Bactérias
3.
Front Nutr ; 8: 689456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268328

RESUMO

The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.

4.
Can J Diabetes ; 44(4): 359-367, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32057671

RESUMO

A host of gastrointestinal (GI) peptides influence the regulation of vital functions, such as growth, appetite, stress, gut motility, energy expenditure, digestion and inflammation, as well as glucose and lipid homeostasis. Hence, impairments in the synthesis/secretion of glucagon-like peptide-1 (GLP-1), leptin, nesfatin-1, glucose-dependent insulinotropic peptide (GIP), ghrelin (acylated and unacylated forms), oxyntomodulin, vasoactive intestinal peptide, somatostatin, cholecystokinin, peptide tyrosine‒tyrosine, GLP-2 and pancreatic polypeptide were previously associated with the development of obesity-related disorders. It is currently emphasized that the beneficial metabolic outcomes associated with the normalization of the gut microbiota (GM) is influenced by increases in GLP-1 and peptide YY secretion as well as by decreases in acylated ghrelin production. These effects are associated with reductions in body weight and adiposity in combination with the normalization of glucose and lipid metabolism. However, important questions remain unanswered regarding how GLP-1, peptide tyrosine‒tyrosine, acylated ghrelin and other metabolically relevant GI peptides interact with the GM to modulate the host's metabolic functions. In addition, it is likely that the GM and other biologically active GI peptides influence metabolic functions, such as glucose control, although the mechanisms remain ill-defined. In this review, we investigate how GM and GI peptides influence glucose metabolism in experimental models, such as germ-free animals and dietary interventions. Emphasis is placed on pathways through which GM and GI peptides could modulate intestinal permeability, nutrient absorption, short-chain fatty acid production, metabolic endotoxemia, oxidative stress and low-grade inflammation.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus/prevenção & controle , Hormônios Gastrointestinais/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/metabolismo , Hormônios Peptídicos/metabolismo , Diabetes Mellitus/metabolismo , Diabetes Mellitus/microbiologia , Humanos , Prognóstico
5.
Inflamm Bowel Dis ; 23(5): 753-766, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28368910

RESUMO

BACKGROUND: Iron is an important nutrient for both the host and colonizing bacteria. Oral iron supplementation may impact the composition of the microbiota and can be particularly damaging to patients suffering from inflammatory bowel disease (IBD). However, patients with IBD may require iron supplementation to treat their anemia. METHODS: We fed mice with diets supplemented with ferrous sulfate at different doses (5, 50, and 500 mg of iron/kg chow) and with different iron formulations (ferrous sulfate, ferrous bisglycinate and ferric ethylenediaminetetraacetic acid [FEDTA]), and analyzed the effects on the composition of the gut microbiota by 16S ribosomal RNA gene sequencing. Using the dextran sodium sulfate (DSS)-induced colitis mouse model, we investigated the effects of iron supplementation in colitis severity, as well as the use of the probiotic Escherichia coli Nissle 1917 (EcN) in combination with iron supplementation. RESULTS: Iron supplementation at different doses induced shifts in the gut microbial communities and inferred metabolic pathways. However, depending on the iron formulation used in the diets, iron supplementation during dextran sodium sulfate-induced colitis was either beneficial (ferrous bisglycinate) or highly detrimental (FEDTA). Finally, the beneficial effect of the probiotic EcN in the dextran sodium sulfate-induced colitis model was potentiated by oral iron supplementation with ferrous sulfate. CONCLUSIONS: These results show that the iron formulations used to treat iron deficiency influence the gut microbiota and colitis in mice and suggest that distinct iron compounds may be of particular relevance to patients with IBD. In addition, the beneficial action of probiotics in IBD may be enhanced by oral iron supplementation.


Assuntos
Colite/dietoterapia , Sulfato de Dextrana/toxicidade , Suplementos Nutricionais , Ferro/farmacologia , Microbiota , Probióticos/uso terapêutico , Animais , Colite/etiologia , Modelos Animais de Doenças , Feminino , Absorção Intestinal , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Proteção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...